21 research outputs found

    Algorithms and data structures for grammar-compressed strings

    Get PDF

    Boxed Permutation Pattern Matching

    Get PDF
    Given permutations T and P of length n and m, respectively, the Permutation Pattern Matching problem asks to find all m-length subsequences of T that are order-isomorphic to P. This problem has a wide range of applications but is known to be NP-hard. In this paper, we study the special case, where the goal is to only find the boxed subsequences of T that are order-isomorphic to P. This problem was introduced by Bruner and Lackner who showed that it can be solved in O(n^3) time. Cho et al. [CPM 2015] gave an O(n^2m) time algorithm and improved it to O(n^2 log m). In this paper we present a solution that uses only O(n^2) time. In general, there are instances where the output size is Omega(n^2) and hence our bound is optimal. To achieve our results, we introduce several new ideas including a novel reduction to 2D offline dominance counting. Our algorithm is surprisingly simple and straightforward to implement

    Lempel-Ziv Compression in a Sliding Window

    Get PDF
    We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approximate rightmost LZ77 parsing problem. Our main result is a new and surprisingly simple algorithm that computes the sliding window LZ77 parse in O(w) space and either O(n) expected time or O(n log log w+z log log s) deterministic time. Here, w is the window size, n is the size of the input string, z is the number of phrases in the parse, and s is the size of the alphabet. This matches the space and time bounds of previous results while removing constant size restrictions on the alphabet size. To achieve our result, we combine a simple modification and augmentation of the suffix tree with periodicity properties of sliding windows. We also apply this new technique to obtain an algorithm for the approximate rightmost LZ77 problem that uses O(n(log z + log log n)) time and O(n) space and produces a (1+e)-approximation of the rightmost parsing (any constant e>0). While this does not improve the best known time-space trade-offs for exact rightmost parsing, our algorithm is significantly simpler and exposes a direct connection between sliding window parsing and the approximate rightmost matching problem

    Finger Search in Grammar-Compressed Strings

    Get PDF
    Grammar-based compression, where one replaces a long string by a small context-free grammar that generates the string, is a simple and powerful paradigm that captures many popular compression schemes. Given a grammar, the random access problem is to compactly represent the grammar while supporting random access, that is, given a position in the original uncompressed string report the character at that position. In this paper we study the random access problem with the finger search property, that is, the time for a random access query should depend on the distance between a specified index ff, called the \emph{finger}, and the query index ii. We consider both a static variant, where we first place a finger and subsequently access indices near the finger efficiently, and a dynamic variant where also moving the finger such that the time depends on the distance moved is supported. Let nn be the size the grammar, and let NN be the size of the string. For the static variant we give a linear space representation that supports placing the finger in O(log⁥N)O(\log N) time and subsequently accessing in O(log⁥D)O(\log D) time, where DD is the distance between the finger and the accessed index. For the dynamic variant we give a linear space representation that supports placing the finger in O(log⁥N)O(\log N) time and accessing and moving the finger in O(log⁥D+log⁥log⁥N)O(\log D + \log \log N) time. Compared to the best linear space solution to random access, we improve a O(log⁥N)O(\log N) query bound to O(log⁥D)O(\log D) for the static variant and to O(log⁥D+log⁥log⁥N)O(\log D + \log \log N) for the dynamic variant, while maintaining linear space. As an application of our results we obtain an improved solution to the longest common extension problem in grammar compressed strings. To obtain our results, we introduce several new techniques of independent interest, including a novel van Emde Boas style decomposition of grammars

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string R and a source string S, a relative compression of S with respect to R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string S is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem

    Lempel-Ziv Compression in a Sliding Window

    Get PDF

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem

    Fingerprints in compressed strings

    Get PDF
    Abstract. The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries. That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i, j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log logN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logN log `) and O(log ` log log `+ log logN) for SLPs and Linear SLPs, respectively. Here, ` denotes the length of the LCE.
    corecore